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AbstncL We present results of highatatistics simulations of the spreading of 3D 
percolation close to the critical point. Our main results are (i) a more precise estimate 
of the spreading (resp. 'chemical distance') dimension: (ii) a novel heuristic scaling 
theory for percolation near surfaces; and (iii) more precise VBIUCS for critical surface and 
edge mpanents. In adition, we verify the very precise results of Ziff and Stell for the 
percolation thresholds, and we study in detail corrections to scaling. me latter is made 
possible by simulating bond and site percolation, in a number of different geometries. 
In addition. in most cases we could measure more than one ohsewable during each 
I I I . I Y I ' 3 L I Y I I I  l l l lL l l  p'L"","r" "I 1 , 1 1 1  qu,r D - S l r  11115111.91 L"""1"LS"Cy CUI I~LLal l l lD .  111 D U l l l r  

cases, we found quite imponant deviations from scaling which are not easily described 
by a single power or logarithmic correction term. 

":.....,".:"- ..Ai_ -_I. :A-A .." __.:.L -..:.- :-.---I ^^^^i  ^^_^._^ :-.- 1.. 

1. Introduction 

The percolation problem provides us with one of the simplest and most intuitive 
critical phenomena (for a review, see [l]). It is thus not surprising that its critical 
behaviour has been studied in extenso. 'Ibols for this include the field theoretic 
renormalization group (mostly near six dimensions), series expansions, conformal 
invariance and exactly solvable models (in two dimensions) and simulations. In three 
dimensions, which will be the case studied exclusively in this paper, the most precise 
I C ~ U I L >  I I ~ V L :  uc:ciii uu~aiiicu WULI iylvtiic M I  IU siIuuiaiiuus. 111 par L I G U I ~ I ,  mere even 
exist special purpose computers such as the machine 'percola' at Saclay [2] which 
were built and run exclusively in order to get more precise results on the critical 
behaviour. 

The critical exponents most difficult to measure (and those measured in [Z], 
in particular; see also [>SI) are exponents related to conductivity and elastic 
properties of the critica! networks. For the basic 'classica!' critica! exponents and 
the percolation thresholds, the most extensive simulations up to now have been 
made by Ziff and Stell [6]. They used several low-cost desktop computers 'for 
extended periods of time' to get p ,  = 0.2488125 f O.ooOoO1O for bond percolation 
and p ,  = 0.311605 f O.ooO010 for site percolation, both on simple cubic lattices. 
Note that the algorithms used in [6] and in the present paper are neither vectorizable 
nor parallelizable, whence the optimal computing environment for them are desktop 
workstations. 

The most serious problem with all numerical studies of critical phenomena are 
possible corrections to scaling. The underestimation of deviations from the asymptotic 
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5868 P Grassbeyer 

scaling laws is mostly responsible for the large number of wrong estimates of critical 
exponents existing in the literature. The work on percolation (and some of my own 
previous work) is no exception in this respect 

The possible problems due to deviations from scaling are best illustrated by an 
example. This example indeed stimulated the present investigation, and the situation 
underlying it is the basic model studied in this paper. 

Consider the spreading of an epidemic process (the 'bug in the orchard' of 
Broadbent and Hammersley [7]) at the critical point, i.e. in a medium where the 
epidemic can just barely survive. Assume that the epidemic can spread just to the 
next neighbour during one time step, and that each site can remain infective during 
one time step, too. After that, the site remains immune. This process is called 
'general epidemic process' [8, 91, and a site infected at time t is called a 'growth site' 
at this time. The set of all growth sites at a given time t is exactly the set of sites 
connected to the 'seed' of the epidemic by minimal paths of length 1. Here the seed 

sei 
any time forms the infinite percolation cluster. 

In particular, consider a configuration where the seed consists of all sites on a 
straight line, and where the epidemic spreads essentially radially away from this line. 
At the critical point we expect that the average distance of the growth sites from the 
seed and the average number of growth sites per unit of length of the seed should 
both increase as powers of 1: 

;he set of s&-s iafect& Bi i ~ 6, a;; siies .W.fl& Wii i  'ie gro.wi~ sites at  

R - t' ng - 1 9 .  (1) 
Later we will discuss these scaling laws in more detail, and will relate the exponents 
z and y to more conventional critical indices. For the moment we just present results 
of simulations for R and n a ainst t. In figure 1 ng against t is shown on a log-log 
scale. Results for bond and site percolation are given, for a number of values of p 
very close to the respective p,. While the results for bond percolation are perfectly 
consistent with no corrections to scaling (for 1 > lo), this is obviously not so for 
the site percolation results. If we had the latter alone (and if we had somewhat 
lower statistics-with our very high statistics the fit is not very good), we would get 
a straight-line fit for p zz 0.3117-0.3118. If we would accept this fit, we would get a 
much higher value of y than before, and thus a very serious violation of universality. 
LUG muc1 L C ~  U ~ i i a i  iiic cxpuiiciir y D riic same iii VULIU aiiu SLLG pci~uiauori, and 
thus the lines in figure 1 should become parallel asymptotically. We thus conclude 
that p ,  for site percolation must be near 0.3116, in agreement with [6], and that the 
curvature seen in figure 1 is due to very large corrections to scaling. Notice that this 
conclusion is reached only since we had also the bond data available as a consistency 
check. 

much smaller statistical errors. We will plot log R against logt later (figure 3), but in 
figure 2 we show the effective slopes in such a plot, obtained by fitting straight lines 
over intervals [ 1 / 4 , t ] .  If the corrections to equation (1) were dominated by analytic 
terms (which can be absorbed into a time offset 1,; 1' = 1 - to) plus a single power, 

g g  

11.- I" ..-- .-,I.. .." .L". .L^ ~ .._. ~~ :- .L̂  ' -..-_I --_I -I.- -^-^^ *-.:-.. 

The va_!ueg nf I! depend much strong!y nn the pre& va_!ue of p ,  and have 

then we would get straight lines when plotting dlogR/dlogt '  against 1/tiA. We 
found that the value of A which gave the best straight lines is zz 0.6, and 
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1 10 1*yer'B 1 = time atepe t o o  I to00 

Figure 1. Average number of growth sites platted again81 time For spreading from a 
line seed. The upper set of cuwes corresponds 10 band percolation, with ,D = 0.24 80; 
0.24881 and 0.24882. The lower curves are for site percolation with p = 0.31155, 
0.31160, 0.31162 and 0.31165. Statistical errors are less than the lhickness of the lines. 

thus plotted in figure 2 the slopes against We see now that the most 
straightfoxward extrapolation would again give different critical exponents for site 
and bond percolation, but now the difference cannot be blamed on the precise values 
of p,. Obviously there are important deviations from scaling not taken into account 
by equation (2). As suggested already by figure 2 and confirmed by a more serious 
analysis, they cannot be fitted with a single logarithmic correction term instead of a 
power law, as proposed for a similar problem in [lo]. 

In view of these observations, it seems that the safest way to find all systematic 
deviations from scaling-and thus the correct critical exponents - is to study at the 
same time a iarge number of observabies in many diiTereni circumstances. For this 
reason, we present in this paper results both for site and for bond percolation. In 
all simulations except the last ones (discussed in subsections 3(b) and 4(c)), we study 
spreading phenomena, with the observables measured as functions of the time 2. We 
use a number of different seeds: line seeds as above, point seeds and seeds which 
consist of all sites in an entire plane. The observables we measure in all these cases 

the spreading can stop since the seed had non-vanishing overlap with the incipient 
infinite cluster, we measure also the probability P(1)  that the spreading has not yet 
stopped (that the epidemic has not yet died out). Finally, we take not only seeds in 
the interior of very large lattices, but also seeds on surfaces. In this way we can also 
measure surface critical exponents. 

As anticipated, the results of all these measurements are not compatible with 
pure scaling laws. They are also not compatible with the assumption that in all cases 
the deviation from scaling is described by a single power or logarithm. Nevertheless, 
we will find that taken together they give by far the most precise estimates of the 

are the aumhers of growth sites and their distances from !hP see4 It! ases where 
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1 / to '  
FLyre 2. Effective aponencs for the increase of the distance of the growth sites from 
a line seed. m e  values of p are the Same as in figure 1, with lhe upper curves 
companding lo  site percolation, and the lower ones to bond percolation. The dots 
correspond to average over p which coincide with the values of pc given in [6]. The 
data were obtained by fitting straight lines to intervals with tmm/tmin = 4. The leading 
analytic correction is taken into account by using t - to instead of 1, and the data are 
plotted against since this gave the straightest lines. The statistical errors are as 
illustrated by the fluctuations of thc CUN-. 

spreading exponent and of surface exponents up to the present. They also give very 
precise estimates for p, ,  in good agreement with those of [6]. 

In the next section we shall formulate the relevant scaling laws. Part of the scaling 
ansatz for spreading in the vicinity of a surface seems to be new. In section 3 we 
describe the simulations. Their results are discussed in section 4, and in section 5 we 
draw our conclusions. 

2. Scaling laws lor spreading 

The relevant scaling laws have been formulated for special seeds in [9, 11, 121, and 
our generalization will be straightfonvard. In the next subsection we assume that the 
seed is finite and is in the interior of an infinite lattice. Spreading from infinite seeds 
will be studied in subsection 2(b)  and spreading in the vicinity of a surface will be 
considered in subsection 2(c). 

2(a) Bulk behaviour, finite seeds. Let us denote the seed by S. It is a finite subset 
of sites from the cubic lattice Z3.  The basic quantity for which scaling laws are 
formulated are as follows. 

(i) the density of growth sites p ( z ,  1 ,  EIS) at time t and point z, with E = p - P,. 
We assume that spreading started at t = 0, and we define the distance P of z from 
the seed as T = min,,, 112 - 1/11, where 11 . 11 denotes the Euclidean norm. From 
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p ( z , t , c l S )  we can immediately obtain the average nunmber N,(t,elS) and the 
average distance r(t, CIS) of growth sites by integration. 

(ii) the probability P(t,elS) that the set of growth sites is non-empty at time t. 
Using renormalization group ideas, we expect that the asymptotic behaviour is the 

same for any finite seed, and we have the ansatzes 

(3) 
€20 

p ( z ,  t ,  E I S )  1 T F ( r / t z , E t ” ” I )  

and 

P(t,eIS) % @G(Et’/’’). (4) 

These ansatzes need some comments. 
Firstly, the scaling variable r / t z  in equation (3)  leads directly to the scaling law 

R % t’ encountered already in the introduction, for any seed (we just have to assume 
that the scaling function F(e,y) is smooth in I and integrable). 

Secondly, the dependence on e is more conventionally written by means of the 
scaling variable le”‘. Our ansatz has the advantage that F(z,y) and C ( y )  have 
simple analyticity properties in y near y = 0 [9] ,  as will be discussed below. Using 
instead leY‘  as scaling variable would lead to  a mole complicated singularity of the 
scaling functions a t  the origin. 

The prefactor E@ in equation (4) is obtained by considering the limit t - CO, E = 
constant > 0, and by assuming the scaling function G( y) to be finite for y --t 00. In 
this limit, P(t,eIS) becomes equal to the probability P ( E , S )  that the seed intersects 
with the infinite cluster. This probability should have the same scaling behaviour for 
all finite seeds namely - [I, - ?:I@. 

Finally, the prefactor c 2 @ / t  in equation (3 )  has a similar origin: one factor 8 
comes from the above probability that the seed intersects with the infinite cluster, 
while the remaining factor t P / t  comes from the probability that the site a t  a is in 
the infinite cluster too. The infinite cluster is just the set of all points which act as 
growth sites at any time. Thus the probability for a distant z to be in the infinite 
cluster is given by 

r-CO lim - P(E,S)  i m d t p ( z , t , c l S ) =  7- lim m P ( e , z ) - @ .  (5 )  

’RI obtain the behaviour exactly at the critical point (this is what we are mostly 
interested in), we write 

F(Z,Y) = YZPf(I> Y) G(Y) = YPdY) (6) 

so that equations (3) and (4) become 

and 
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We can now assume that f ( z , y )  and g(y) are finite (and analytic) at y = 0, and 
obtain 

f(r/t”,o) (9) 

P(t,OlS) - t - 6  (10) 

6 = p/u t .  (11) 

2 P l w - 1  p(z,t,OlS) - t- 

and 

with 

Integrating over z at b e d  1 (in d dimensions of space) we obtain from 
equation (9) 

N,(t,OIS) = /ddz p(z , t ,OlS)  - typa-* (12) 

with 

2P 
ut 

ypoint = dz - - - 1 

This can also be written as ypin, = d - p / u t  - 1, where 

d = d z - P / u ,  (14) 

is the ‘spreading dimension’. When conditioning on seeds which overlap with the 
infinite cluster, then the total number of sites ’wetted’ at times < t scales as Id. 

Finally, it is easily seen that 

z = ./ut (15) 

where U describes the correlations between points in the infinite cluster [l]. For this 
we have just to consider the integral of p ( z , t ,  EIS) over all t > 0 a t  tixed z, and find 
that it is a function of the scaling variable er1/’’, up to a pure power. The fractal 
dimension D, of the infinite incipient cluster is D, = d / z  = d - @/U. 

2(b) Bulk behaviour, infinite seeds. Apart from having different scaling functions, the 
main difference when going over to infinite seeds is that the seed has a larger chance 
to intersect with the infinite cluster. 

It is known that in three dimensions the critical infinite cluster has fractal 
dimension D, o 2.5 [ll]. Thus the intersection of a line with it will have D, % 0.5, 
and the intersection with a plane has D, o 1.5. Since both are positive, a typical 
line or plane will intersect the infinite cluster with probability 1, and we find that 
P( t ,  E )  = 1 for line and plane seeds. The same is true in four dimensions where 
D, cz 3.05 [ll]. Notice that this applies only to infinite seeds. On finite lattices one 
has strong cross-over effects. Finally, for dimensions greater than four the line will 
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not intersect the infinite cluster with probability 1, and the following arguments will 
have to be replaced by ones similar to those leading to equation (29) below. 

For the density p ( z , t , c I S ) ,  this means that the prefactor c 2 @ / t  in equation (3) 
has to be replaced by @/t .  When considering the number of growth sites, we have 
to take into account that we must study the average numberper unit length resp. unit 
surface, not the absolute number. We call this ng. For a line seed, we thus obtain 

with [12] 

y l i n e = ( d - l ) z - - - 1 .  P 
"i 

For a plane seed, we find similarly 

with [9] 

y p l a o e = ( d - 2 ) Z -  - - 1 .  P 
"1 

More generally, we could also consider fractal seeds. The resulting densities would 
in general depend non-trivially on the direction of x. Studying this would go beyond 
the scope of the present paper. 

2(c)  Su$aces and edges. If the spreading is away from a surface, the above ansatzes 
remain essentially unchanged, even if the seed happens to be located on the surface. 
The only modifications (again apart from different scaling functions) are that the 
spreading might become direction dependent, and that the exponent p is different on 
a surface. In the following we shall assume the surface to  be straight. 

It is well established that the probability that a surface site is contained in the 
infinite cluster in the supercritical case scales as [13-161 

~ ( e , z  E surface) - e@' (20) 

with a new exponent 0, > 0. A surface site is less likely to be connected to the 
infinite cluster since all connecting -.  paths which would have passed outside the surface 
are cut off. 

Let us now consider the spreading from a point seed located on a surface. 
Equation (4) now has to be replaced by 

~ ( t ,  elsurface point) ii:  et""^). (21) 

where G, is a new scaling function, but the critical exponent ut is not changed. At 
criticality, we have thus P - t-** with 

6, = PJ"i  
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in analogy to equations (11). 
On an edge characterized by an angle 0, we expect that p is replaced by a function 

of 0. In particular, for a rectangular edge (which is the only case studied below) we 
shall call the critical exponent ped e, and expect that ped@ > 0,. In analogy to the 
above, the growth suwkal probabihty for a point seed on such an edge will decrease 
as P - t - b  with 6,, = &,,/ut. 

The density of growth sites m the vicinity of a plane surface will scale differently 
parallel to the surface and away from it. Let us denote by 4 the angle between the 
growth direction and the surface. Then equation (3) is replaced by 

Notice that we assume also that the exponent z is unchanged. The fact that the 
exponents U and ut are unchanged in the vicinity of a surface were previously derived 
by field theoretic methods in [13] and [14], respectively. The simulations presented 
below give another independent and numerically very precise verification. 

From these ansatzes it follows that the average distance of growth sites from the 
seed increases at the critical point as t', both for growth sites on the surface and in 
the bulk. This might seem surprising since the 'static' critical correlations between 
surface sites decrease faster with distance than in the bulk c ( z )  - rZ-dt'J* with 
vla = 2&/u - d - 2. Also the fractal dimension of the set of wetted surface sites, 
Df,+ = d - 1 - PJu, is different from that in the bulk. But in spite of that, the 
clusters of all wetted sites are not very non-isotropic. The ratio (R:)/(Ri) is only 
% 1.25, and the main anisotropy is concentrated in a rather thin region near the 
surface. 

This faster decay of 'static' correlations arises from the fact that the number NF' 
of growth sites on the surface decreases faster than that of growth sites in the bulk. 
From equation (23) we obtain 

and 

(25) 2Ps N r " ( t ,  Olsurface point) - tY**e+* YS"rf,""rf = ( d  - 1)f - - - 1. 
"t 

For point sources on edges, one has analogously 

and similarly for ycdge,rdge. 
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Finally, the density of surface sites which are connected to any site a distance L 
away from the surface (and whence are wetted though a slab of finite thickness L) is 
found to decrease at criticality as 115, 161 

! 

p w L-b.1.. (28) 

In addition to  point seeds on surfaces, we had also studied in [12] line seeds on 
surfaces and on edges between perpendicular surfaces. In these cases the survival 
probability P ( t )  would still be 1 on an infinite lattice, but its behaviour will be 
complicated on finite lattices. The growth site number, on the other hand, will scale 
with exponents which depend on the fractal dimension of wetted boundary (resp. 
edge) sites. 

of wetted edge sites is definitely less than zero for 
d = 3 [12] (i.e. the probability that an edge contains a site in the infinite cluster 
decreases as an inverse power of the lattice size). The scaling exponent can then be 
estimated as follows. Let us consider those sites on the edge which are connected 
to clusters reaching a distance E away from the edge. A site will belong to this set 
essentially if the spreading from it survives at least a time t = t1I2. The density of 
such sites will thus decrease as . f - @ . d " .  On the other hand, each such site will give 
rise to a roughly isotropic cluster of growth sites with - c D ' / t  = sites. These 
clusters will essentially not overlap if Ped, > U. In this case the total number of 
growth sites per unit length ns( t, 0 I edge line) should scale with an exponent which 
is exactly that for a point seed on the edge, 

The fractal dimension D) 

Notice that this would also agree with equation (17) if ped, = U, i.e. if the non- 
overlap condition would hold marginally. The non-overlap condition is just the 
condition that D,,& < 0. 

In contrast to e&e sites, the fractal dimension of the set of surface sites Df,+ is 
very close to 1 (for d = 3) [12]. Thus its intersection with a line has dimension very 
close to zero. In this case it is not clear a priori whether ysurf = Y,,,~ (if Df,s < 1) 
or whether ysud line = ylioe (if Df,s > 1). 

3. The simulations 

(a) As we had already said in the introduction, all simulations (except those 
described in part (b) below) model the growth processes described in the last section. 
They use essentially the same routines as those in [l l ,  121, with just a few technical 
improvements which increase speed. In particular, the status of each site (wewedhot- 
wetted for bond percolation, tested/not tested for site p )  is stored in 1 bit (using 
multispin-coding, i.e. storing 32 sites in one long integer word). The list of actual 
growth sites is stored in an array which is updated and replaced after each time 
step. The random decision whether a site (resp. bond) is broken or not is not made 
in advance but 'on the fly'. Thus it has to be made only for sites (bonds) which 
have at least one wetted neighbour. On large lattices this is a very important saving, 
making the routine much faster than the well-known Hoshen-Kopelman algorithm, for 
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example. This algorithm is often called the Leath algorithm, though the description 
given by Leath [17] is somewhat different and, when followed literally, would be much 
slower. As random number generator we used a KirkpatrickStoll type generator [is] 
with (p,q)=(250,147). On a DECstation 2100, where most of the simulations were 
done, we got about 5OOOO wetted sites per second for bond percolation, and 30000 
for site percolation. For a bond cluster obtained from a point seed and followed for 
up to 800 time steps, this gave on average about 0.365 s. 

In order to avoid excessive swapping, the lattice sizes actually used by most 
ciusters were typicaiiy restricted to about i@ sites (ii MB). The aiiocated lattices 
were defined to be about twice as large, to allow larger clusters occasionally and thus 
to avoid finite-size effects. 

Let us now consider possible finite-size corrections (FSCS) in more detail. 
For simulations with point seeds, there are no FSCS at all, provided the lattice is 

large enough so that its boundary is never hit. The latter was checked in each run. 

of the seed extension(s). Let us call a point y an ‘ancestor’ of a space-time point 
( z , t )  if there is a spreading path from y to z of length 6 t. It is easy to see that 
FSCS are proportional to the probability that any point ( z , t )  has two ancestors y1 
and y, which are a distance L apart. Indeed, a configuration on a finite lattice with 
periodic boundary conditions can be viewed as a special-periodic-configuration on 
an infinite lattice. This periodicity (which is the only possible source of FSCS) can only 
be felt if a point has two ancestois which are in idenGcal states due to the periodicity. 
For line seeds, we could use lattices longer than the maximal diameter of any cluster 
measured with point seeds (with comparable statistics), ruling thus out any sizeable 
FSCS. In general the aspect ratio (lengthlwidth) of the lattice was about 2. 

For plane seeds, the above criterion would have required somewhat too large 
lattices. But notice that the above estimate is somewhat pessimistic and can be 
refined. A more careiui argument shows tnat FSCS can arise oniy if the ioiiowing 
holds for some t > 0 together with each ancestor y of (2, t ) ,  also one of the four 
points y f Lei is an ancestor of (2, t ) .  Here e, and e2 are unit vectors in the seed 
plane. If this does not hold (i.e. if for each ( z , t )  one of the ancestors is unpaired), 
then this unpaired ancestor would have already wetted ( z , t ) ,  and this would be 
independent of any periodicity. We estimated that with our lattice sizes and growth 

Fn: iafinite seeds ‘.Ye rsed pericdic bGCfiGa7 CGxditions (!engt!: L )  in the di:ectio=n 

tixes ( L  = 512, t < 15%) the :esa!!izg cscs are aeg!igib!e. 

(b) In addition to these simulations where the spreading was followed in real time 
as in an epidemic process, I used also a depth-first algorithm as given in [19]. This is 
somewhat faster than the breadth-first algorithm described above, but it does not give 
observables as functions of spreading time. It was thus used only in an application 
where fo!!owifig !he rea!-time evo!mion would not have made sense in any case. 
These runs were devoted to measuring directly the surface exponent &/v appearing 
in equation (28). For this, I used a lattice of size L x L x h with L > h. What was 
measured was the number of sites on the upper surface z = h wetted by the entire 
lower surface z = 0 taken as seed. Lateral boundary conditions were again taken 
periodic. For this purpose, h was first put to 1, spreading was run until all wettable 
sites had been wetted, and all wetted sites on the upper boundaly were written in 
a list. After that, the height was increased to h = 2, the previous list of wetted 
boundary sites was taken as the new seed, and spreading was continued until again 
all sites were wetted. This was repeated, each time increasing h by one unit and using 
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the old list of wetted sites as new seeds, until the maximal hight was reached. In this 
way the surface ‘order parameter’ was measured in a single run for all heights up 
to h = 255, on surfaces of size 640. The statistics accumulated this way was several 
orders of magnitude larger than that of [ 161. 

For these last simulations, the above arguments against FSCS are not helpful since 
we do not have any control of the spreading times, and they can occasionally be very 
large. To estimate FsQ in this case, we thus also ran simulations on smaller lattices. 
Results from such a check will be given later together with the main results. 

(e) AI1 simulations reported below were done in the close vicinity of the percolation 
thresholds: for bond percolation, we used 0.2878 6 p < 0.2884, while for site 
percolation 0.31155 < p 6 0.3117. These intervals are large enough that they span 
the uncertainty of pc ,  and thus allow estimates of it. On the other hand, they are so 
small that the dependence of the observables on p is sti!! !inear; and hence averages 
can be formed by averaging over p. 

The entire statistics is found in table 1, together with the average CPU times per 
run. The total CPU time spent on these simulations was somewhat more than 4700 h. 

Table 1. ‘’?@ indicates bond (b) and site (s) percolation, respectively. ‘Lateral size’ 
indicates the size of the lattice in the direction of the seed, unless the latter is a 
point. ?he last WO lines (wetted surface sites) refer to simulations using the depth-first 
algorithm discussed a1 the end of section 3. Far them, lhe first column refcrs 10 the 
thickness h of the layer, while far all other simulations the fin1 column gives the number 
t of time steps. 

Seed m Laleral CPU time Number 
No (observable) (&) t ‘esp. h size WNn) Of NUnS 

1 Point b 800 - 0.37 48WwO 
2 S 750 - 0.73 29WwO 

3 
4 

5 
6 

7 
8 

9 
10 

11 
(1 

13 
14 

I5 

16 

line 

Piane 

Surface p i n t  

Surface line 

Edge p i n 1  

Edge line 

Surface, 
Wetted 
surface sites 

b 
S 

b 
8 

b 
s 

b 
S 

b 

b 
8 

b 
s 

7 w  
650 

1500 
14w 

1100 
1100 

1050 
1000 

15W 
!SM 

15W 
15W 

255 
255 

768 
768 

512 x 512 
512 x 512 

1024 
1024 

- 
~~ - 

768 
896 

640 x 640 
640 x 640 

19 
2s 

75 
96 

0.09 
0.13 

9.1 
9.8 

0.0076 
!2.!3!55 

1.8 
1.93 

140 
160 

600W 
84 000 

8 SO0 
7!00 

26 000000 
l5000000 

43 000 
44000 

44000000 
!B MnnM 

340wo 
250000 

10 700 
4 800 
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4. Results 

4(a) Erponenr z. In figure 3 we show the distances R ( t )  for the six most relevant 
sets of growth sites. On each panel both bond and site results are shown. In order for 
the graphs to be more significant, we have divided off the dominant power behaviour 
tu.", and show the ratios R/t0,73 on log-log plots. In all panels the upper curves 
refer to site percolation, while the lower ones refer to bond percolation. As we had 
already pointed out in the introduction, R ( t )  depends very little on the precise value 
of p. The curves shown in figure 3 represent averages over all p, with the average 
p very close to 0.2488125 resp. 0.311605. If we had superimposed the individual 
results for each p, the curves would have thickened only very little. 

Panel (b) shows the distance of growth sites on a surfuce (from a point seed on 
the same surface.). The fact that we see the same power behaviour as in the other 
panels (where growth sites in the bulk are used) is our best proof for the claim that 
t is the same on surfaces and in the bulk. 

Except in panels (b), (e) and (f) ,  the statistical errors are less than the widths of 
the lines. In panel (b), the uncertainties are just as large as the visible jitter, while the 
errors in panels (e) and (f) are up to 0.1%. With these caveats, all trends visible in 
figure 3 are thus statistically significant. In particular, we see in panel ( d )  that the site 
percolation results from line seeds clearly indicate that z > 0.73 (as was also clear 
from figure 2): not only has the upper curve a positive slope for large t, it is also 
curved upward. Similar upward curvatures are seen in panels (a) and (c) .  In panel 
(b) the bond result looks very straight and the site result is slightly curved downward. 
Clear downward curvatures are seen in panels (e) and (f). In addition, the bond 

0.78 

0.76 

O S G  4 
0 0.02 0.04 0,OG 008 0 1  0.12 014 0 1 6  

1 / 1 0 '  

Figure 4. Effective exponents for the increase of the growth site distances. As in figure 2, 
B t s  to the derivatives d log R/d log(t - t o ) ,  fitted over WO octaves. are plotted against 
l / t 0 . 6 .  The values of 10 are chosen such as to produce the straightest lines. Each line 
c o m p o n d s  to one geometry (with the numbers componding to those in tables 1 and 
2), and lo an average over all vaIuc( of p in the vicinity of pe. In these averages care 
was taken to oblain averages of p equal lo the values of p1 given in [6].  Statistical errom 
can be estimated by comparing with Rgure 2 and with the errors of the extrapolations 
to t - m given in table 1. 
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percolation results in the latter panels show already significant negative slopes, which 
together with the downward curvature would clearly indicate z < 0.73. 

Local effective exponents obtained from the data shown in figure 3 are given in 
figure 4. From equation (2) we would have 

dlogR(l) = + (z- a - l)b/t'A + .. 
d log 1' 

with 1' = t-1,. Thus we plotted dlog R(t)/dlogt', obtained by fitting over intervals 
[t/4,1], against 1 / f A .  If equation (2) is correct and 1" was chosen optimally, we 
would get straight lines. We indeed see reasonably straight l i e s  in figure 4, with 
a value A = 0.6 compatible with previous analyses [ l l ,  121. We should however 
point out that the origin from which R is to be measured is not always uniquely 
defined. Allowing an uncertainty 6 R  of order 1 in the definition, the scaling ansatz 
should read R zz 6R + At" FZ At'( 1 -t constantl-z), mimicking thus a non-analytic 
correction with exponent A % 0.73. It is possible that the observed A is strongly 
influenced by this. 

But the intercepts of these lines at l / t  = 0 do not coincide. These should be the 
true critical exponents. Their values are given in the first column of table 2. Notice 
that the fits were made for each data set separately, i.e. no consistency between the 
lines of table 2 were imposed. The errors there are somewhat subjective, as is usual in 
such extrapolations. This could of course mean that universality and/or hyperscaling 
is violated, but we prefer to  interpret it as evidence for further corrections to scaling 
which would be explicitly visible only with much higher statistics. 

Thus no simple ansatz for the corrections to scaling is possible which could 
describe all data shown in figures 3 and 4 consistently. On the other hand, the 
discrepancies are very small. Each curve is compatible with z being not more than 
two standard deviations away from the value 

z = 0.728f 0.003 

which we take as our preliminary estimate. 
Previous estimates of this exponent were, among others, 0.725 +Z 0.006 [ll], 

0.728iO.M)6 [12], 0.70f0.01 [20] and 0.746f0.0056 [21]. The latter bad consumed 
by far the largest amount of CPU time (about SO00 h CPU time on an IBM 3091 
mainframe), but seems to be off by more than 2 standard deviations. 

4(b) Exponents y, 6; bulk behaviour. In contrast to R ( t ) ,  both N , ( t )  (resp. n,(,t)) 
and P( 1 )  are strongly dependent on p. This suggests two possible strategies. In view 
of the fact that our total statistics is smaller than that of [6], we can accept their 
estimates of p,, and obtain estimates of y and 6 with very small statistical error bars. 
Alternatively, we can try to fit the exponents together with p,. In table 2 we show 
results of the first kind of fit, in table 3 the latter. For both tables notice that y 
depends on the seed, in contrast to z, and that 6 is non-zero only for point seeds. 

Compared with R(t), both n,( t )  and P(1) have in general more complicated 
vkible corrections to scaling, i.e. no straight lines are in general obtained when plotting 
the logarithmic slopes against any negative power of 1 with an exponent close to 0.6. 
As examples we show in figure 5 the effective exponenB for the numbers of growth 
sites from point seeds on surfaces (panel (a)), and from line seeds (panel (b)). 



Numerical studies of critical percolation in three dimensions 5881 

a . 
$ 1 1  1 1 1 1  

I 

I 1  I I  

II II 
I I d d  I I  

Dur D m  n n  



5882 P Grassberger 



Numerical sfudies of crifical percolafion in three dimensions 5883 

Plgvre 5. Effective exponents for the number ( m p .  density) of growfh sites. The data 
were obtained by fitting straight lines lo log N,fdlog t as in figure 2. No constant offset 
t o  was subtracted from t. since no straight lines would have been obtained for any to. In  
panel (a) the seed was a point on a surface, while in panel ( b )  it was a line. The values 
ofpareinpanel(a)p=0.31159 ,..., 0.31163,resp. p=O.24888 ,..., 0.24883,both 
in steps of O.wOO1. In panel ( b )  the curves are for p = 0.31155. 0.31160. 0.31162 
and 0.31165, m p .  p = 0.24888, 0.24881 and 0.24882. The dots correspond again to 
averages. 

We have to add one comment on the estimate of ysud in lines 11 and 12 of 
tables 2 and 3. Though this is strictly speaking not a bulk exponent, the relation 
ysurf ,he = min{y,,,, yline) puts a strong constraint on it in terms of bulk exponents 
and vice versa. By plotting the logarithmic derivative d l n n g / d l n l  for growth from 
a surface against l / tA,  we find straightest lines for A $5 0.15-0.2 (see figure 6). 
Such small A implies however that the true exponent is obtained by a very long 
extrapolation, and has thus very large uncertainties. Also, the offset 1" needed to 
produce a straight line for the site percolation data was 1, $5 8, indicating that a 
fit with a single non-analytic correction term is not very meaningful. Similarly large 
corrections to scaling are also responsible for the very large errors quoted for some 
of the other exponents in table 2. 

Comparing tables 2 and 3 we see few differences. In general the estimates for p ,  
in table 3 are very close to those of [6]. Our hest overall estimates (using in addition 
the simulations to be discussed in the next subsection) are 

p ,  = 0.248814 =k 0.000003 (bond percolation) (32) 

and 

p ,  = 0.311604 f 0.000006 (site percolation). (33) 

Imposing the correct scaling relations, our overall estimates for the bulk exponents 
are finally 

z = 0.728 0.002 y = 0.4% f 0.006 6 = 0.345 f 0.004. (34) 
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0 0.2 0.4 1 

1 i ? “  

Figure 6. Similar to figure 5,  but for a line seed on a surface, and plolled 
against l/to.”. Also. constants 10 were used as in figure 2 io produce slraight 
lines. The curves comespond 10 p = 0.31158, 0.3116, 0.31162 and 0.31165, resp. 
p=O.24888 ,..., 0.24883. 

Exponenls derived from these are = 2 p / v  - d + 2 = 2 6 / z  - 1 = -0.052 f 0.009 
and D, = d - p/v = 3 - S/L = 2.526 i 0.006. They are in very good agreement 
with the more precise estimates of 1-51. 

In conclusion we can say that the determination of y and 6 is less precise than 
that of L. But it is less problematic, not because the scaling corrections are smaller, 
but because they are already visible at the present lattice sizes. For z there must 
be scaling corrections which should show up only much later, and whose existence is 
only indicated indirectly internal inconsistencies. 

Finally, I want to make a short comment on the supercritical behaviour. For 
p > p e ,  we expect ng to  tend towards a positive constant with t - 03, when 
starting with a plane seed. Naively one might have expected this convergence to 
be monotonic, since n8 decreases also monotonically at p = p, .  But as seen in 
figure 7 (and observed already in [ll] for d = 4), this is not true. For a plane 
seed, ng first goes through a minimum before settling towards a constant (we cannot 
exclude even further oscillations). A posienmi, this can be explained easily. The 
decrease of ng for a plane seed is a result of two competing effects: on the one hand, 
the growth surface becomes more and more wrinkled with time, and thus its area 
increases. On the other hand, the density of growth sites on this wrinkled surface 
decreases, and actual growth is resaicted to fewer and fewer subdomains. Figure 7 
shows that the latter effect dominates at small times (and for p = p ,  at all times), 
but that the wrinkling effect dominates at large times for p > p, .  

4(c) Surface and edge aponenis. The simulations with seeds on surfaces and on 
edges, and with the spreading followed in ‘real’ time, were analysed exactly as those 
with seeds in the The results are also given in tables 2 and 3. As seen from these 
tables, the internal consistency of these results is quite good. They give the estimates 
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1 10 L O O  1000 
t 

Plgure 7. Density of grauth sites for bond percolation using a seed which consisted of 
an enlire plane, plolted against t .  What looks like a slraighl line is acluaiiy three curves 
for p = 0.2488, 0.24881 and 0.24882. For pG 0.25 one Sees lhal ng goes through a 
minimum, before lending towards a conslanl for t - CO. 
& / U  = 6,/z = 0.966k 0.007 p e / v  = 6,/r = 1.56k0.01. (35) 

The depth-first simulations (reported in the last lines of tables 2 and 3) were the 
only simulations where we could not exclude finite-size corrections a priori. Thus we 
have also performed simulations on a lattice with much smaller base surface than 
that of our main simulations (L x L = 160 x 160 instead of 640 x 640). In figure 8 
we show the number of wetted sites against the thickness h of the layer, both for 
the main simulations and for these test runs. We see that the finite-size corrections 
are negligible for h < 0.4Z, suggesting thus that we can believe our simulations up 
to h = 256. Tne resulting exponents are aiso given in tabies 2 and 3, ana our iinai 
estimate for ps is 

p,/v = 0.970 f 0.006. (36) 

This should be compared with the best previous estimate, p s / u  = 0.98i0.02 of [16]. 
The fractal dimension of wetted surface sites becomes from this Df,, = d - l - p , / v  = 
1.030 f 0.004. This is indeed slightly larger than 1, in agreement with our finding 
that ~ s u r t  line = Y1i.e. 

5. Conclusions 

In this paper we have presented Monte Carlo results for the spreading of percolation 
in three dimensions. In order to check for systematic corrections to scaling, we 
have compared bond and site percolation, and we have measured in many different 
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Figure 8. Densily of welted surface siles for bond percolation slarling from the 
oppasite surface of a slab-shaped lattice, plotled againsl the ihicknw h of the slab. 
In contrast to all previously shown figures, lhese dala were obtained by means of the 
depth-first algorithm dffcribed a1 the end of section 3. The upper four C U N ~ S  are for 
p = 0.24876,. , .0.24884 in steps of O.WO02, on IattiecS with surfsec 640 x 640. ?hc 
lowest curve is for p = 0.2488 on a surface of only 160 x 160 sites. 

geometries. Except for the last set of data, we have also measured in each case more 
than one observable. 

In particular we have also measured the spreading in the vicinity of surfaces and 
edges. This gave us, in addition to the bulk exponents, also estimates of the surface 
resp. edge exponents. In order to compare the exponenls of different observables 
in different geometries, we have formulated new heuristic (hyper-)scaling laws which 
were tested with high precision. 

Compared with previous simulations, our statistics is outpassed only by those of 
[6] (who did not measure spreading and surface exponents) and those of [2], who 
measured indeed none of the present observables. Compared with all other studies, 
the present one gives srarisrica[ errors which are smaller by at least one order of 
magnitude. Our quoted final errors show much less improvement due to the very 
substantial systematic corrections to scaling which went unnoticed in previous work. 

We verified previous claims [ll] that the distance R(2) involved a correction-to- 
scaling exponent A zz 0.6 with large amplitude. But we found that this cannot be the 
leading correction Otherwise our data would not be internally consistent: in addition 
to breaking of universality in the usual sense, we would have no universality between 
exponents measured in different geometries. 

For the second independent critical bulk exponent we found similarly large 
corrections to scaling. In that case, one could indeed see from some of the individual 
measurements that a very small correction-to-scaling exponent is needed. A precise 
measurement was impossible since this seemed not to be the only such exponent less 
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than 1. The latter is in contrast to claims in [lo] (for different obsewables), where 
only analytic corrections to scaling were found in addition to logarithmic ones. were 
found in addition to logarithmic ones. 

The same remarks apply to the surface exponent p,. Finally, we also measured 
the analogous edge exponent 0.. We found that the fractal dimension of wetted 
surface sites is slightly larger than 1, and that the fractal dimension of wetted edge 
sites is definitely less than 0. This agrees with previous findings [12], and means that 
the probability for an edge of a cube to intersect the largest cluster tends to zero 
when its size tends to 00. 

An important result of our simulations is that there is only a single independent 
surface exponent, and (for any fixed angle) a single edge exponent. Apriori one might 
have thought that a second independent surface exponent is needed for spreading, 
but our simulations showed clearly that this is not the case. 

In [ll] only planes were used as seeds. It was argued that point seeds in particular 
should be less efficient since they induce large fluctuations at early stages of the 
growth (where the number of growth sites per cluster is very small), and that these 
fluctuations influence the measurementE also at later times. This is true, but it is 
only part of the full truth. Another effect is that with large seeds (planes, lines) one 
spends much more time on small clusters which contribute little to understanding the 
scaling region. If one uses point seeds, the probability for a randomly chosen seed 
to be on a cluster of size N is proportional to N, thus suppressing small clusters. 
We found that both effects essentially cancel. The statistical errom on the exponents 
obtainable with fixed CPU time are very much independent of the type of seed. 

Our results show that one has to be very careful when using spreading for 
estimations of critical percolation exponents, though it seems to be by far the most 
efficient algorithm as far as speed is concerned. In order to go substantially beyond the 
present investigations, one would have to use not only larger clusters but also much 
higher statistics. Only then one could hope to fix precisely the scaling corrections, 
and to obtain reliable extrapolations to the critical point. 
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