IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Numerical studies of critical percolation in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 5867
(http://iopscience.iop.org/0305-4470/25/22/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:33

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

I. Phys. A: Math. Gen. 25 (1992) 5867-5888. Printed in the UK

Numerical studies of critical percolation in three dimensions
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Physics Department, University of Wuppertal, [3-5600 Wuppertal 1, Federal Republic of
Germany

Received 22 May 1992

Abstract. 'We present results of high-statistics simulations of the spreading of 3D
percolation close to the critical point. Our main results are (i) a more precise estimate
of the spreading (resp. ‘chemical distance’) dimension; (ii) a ncvel heuristic scaling
theory for percolation near surfaces; and (iii) more precise values for critical surface and
edge exponents. In adition, we verify the very precise results of Ziff and Stell for the
percolation thresholds, and we study in detail corrections to scaling. The latter is made
possible by simulating bond and site percolation, in a number of different geometrics.
In addition, in most cases we could measure more than one observable during each
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cases, we found quite important deviations from scaling which are not easily described
by a single power or logarithmic correction term.

1. Introduction

The percolation problem provides us with one of the simplest and most intuitive
critical phenomena (for a review, see [1]). It is thus not surprising that its critical
behaviour has been studied in extenso. Tools for this include the field theoretic
renormalization group (mostly near six dimensions), series expansions, conformal
invariance and exactly solvable models (in two dimensions) and simulations. In three
dimensions, which will be the case studied exclusively in this paper, the most precise
results have been obtained with Monte Carlo simulations. In Pdl u'.,mdl, there even
exist special purpose computers such as the machine ‘percola’ at Saclay [2] which
were built and run exclusively in order to get more precise results on the critical
behaviour.

The critical exponents most difficult to measure {(and those measured in [2],
in particular; see also [3-5]) are exponents related to conductivity and elastic
properties of the critical networks. For the basic ‘classical’ critical exponents and

the percolation thresholds, the most extensive simulations up to now have been
made by Ziff and Stell [6). They used several low-cost desktop computers ‘for
extended periods of time’ to get p, = 0.2488125 + 0.0006010 for bond percolation
and p_ = 0.311605 + 0.000010 for site percolation, both on simple cubic lattices.
Note that the algorithms used in [6] and in the present paper are neither vectorizable
nor parallelizable, whence the optimal computing environment for them are desktop
workstations.

The most serious problem with all numerical studies of critical phenomena are
possible corrections to scaling. The underestimation of deviations from the asymptotic
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scaling laws is mostly responsible for the large number of wrong estimates of critical
exponents existing in the literature. The work on percolation (and some of my own
previous work) is no exception in this respect.

The possible problems due to deviations from scaling are best illustrated by an
cxample. This example indeed stimulated the present investigation, and the situation
underlying it is the basic model studied in this paper.

Consider the spreading of an epidemic process (the ‘bug in the orchard’ of
Broadbent and Hammersley [7]) at the critical point, i.e. in a medium where the
epidemic can just barely survive. Assume that the epidemic can spread just to the
next neighbour during one time step, and that each site can remain infective during
one time step, too. After that, the site remains immune. This process is called
‘general epidemic process’ [8, 9], and a site infected at time ¢ is called a ‘growth site’
at this time. The set of all growth sites at a given time ¢ is exactly the set of sites
connected to the ‘seed’ of the epidemic by minimal paths of length t. Here the seed
is the set of sites infected at ¢ = 0. The set of all sites which will be growth sites at
any time forms the infinite percolation cluster.

In particular, consider a configuration where the seed consists of all sites on a
straight line, and where the epidemic spreads essentially radially away from this line.
At the critical point we expect that the average distance of the growth sites from the
seed and the average number of growth sites per unit of length of the seed should
both increase as powers of ¢,

Retr  mg~tY, M

Later we will discuss these scaling laws in more detail, and will relate the exponents
z and y to more conventional critical indices. For the moment we just present results
of simulations for R and rn, against ¢. In figure 1 n, against ¢ is shown on a log-log
scale. Results for bond and site percolation are gwen for a number of values of p
very close to the respective p.. While the results for bond percolation are perfectly
consistent with no corrections to scaling (for ¢ > 10), this is obviously not so for
the site percolation results. If we had the latter alone (and if we had somewhat
lower statistics—with our very high statistics the fit is not very good), we would get
a straight-line fit for p ~ 0.3117-0.3118. If we would accept this fit, we would get a
much higher value of y than before, and thus a very serious violation of universa]ity
The latter tells us that the exponent y is the same in bond and site pt‘:ICOlauGi'l, and
thus the lines in figure 1 should become parallel asymptotically. We thus conclude
that p, for site percolation must be near 0.3116, in agreement with [6], and that the
curvature seen in figure 1 is due to very large corrections to scaling. Notice that this
conclusion is reached only since we had also the bond data available as a consistency
check.

much smal]er stausncal errors We w1l] plot log R agamst logt ]ater (ﬁgure 3) but in
figure 2 we show the effective slopes in such a plot, obtained by fitting straight lines
over intervals [t/4,1]. If the corrections to equation (1) were dominated by analytic
terms (which can be absorbed into a time offset ¢;; ¢’ = t — ¢;) plus a single power,

R=At”(+tm+ ) @

then we would get straight lines when plotting dlog R/dlogt' against 1/t We
found that the value of A which gave the best straight lines is ~ 0.6, and
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Figure 1. Average number of growth sites plotted against time for spreading from a
line seed. The upper set of curves corresponds to bond percolation, with p = 0.248 80,
0.24881 and 0.24882. The lower curves are for site percolation with p = 0.31155,
0.31160, 0.31162 and (.31165. Statistical errors are less than the thickness of the lines.

thus plotted in figure 2 the slopes against 1/#%f. We see now that the most
straightforward extrapolation would again give different critical exponents for site
and bond percolation, but now the difference cannot be blamed on the precis¢ values
of p,. Obviously there are important deviations from scaling not taken into account
by equation (2). As suggested already by figure 2 and confirmed by a more serious
analysis, they cannot be fitted with a single logarithmic correction term instead of a
power law, as proposed for a similar problem in [10].

In view of these observations, it seems that the safest way to find all systematic
deviations from scaling—and thus the correct critical exponents — is to study at the
sanie iime a large number of observabies in many different circumstances. For this
reason, we present in this paper results both for site and for bond percolation. In
all simulations except the last ones (discussed in subsections 3(b) and 4(c)), we study
spreading phenomena, with the observables measured as functions of the time ¢. We
use a number of different seeds: line sceds as above, point seeds and seeds which
consist of all sites in an entire plane. The observables we measure in ali these cases
are the numbers of growth sites and their distances from the seed. In cases where
the spreading can stop since the seed had non-vanishing overlap with the incipient
infinite cluster, we measure also the probability P(t¢) that the spreading has not yet
stopped (that the epidemic has not yet died out). Finally, we take not only seeds in
the interior of very large lattices, but also seeds on surfaces. In this way we can also
measure surface critical exponents,

As anticipated, the results of all these measurements are not compatible with
pure scaling laws. They are also not compatible with the assumption that in all cases
the deviation from scaling is described by a single power or logarithm. Nevertheless,
we will find that taken together they give by far the most precise estimates of the
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Figure 2. Effective exponents for the increase of the distance of the growth sites from
a line seed, The values of p are the same as in figure 1, with the upper curves
corresponding to site percolation, and the lower ones to bond percolation. The dois
correspond to averages over p which coincide with the values of p. given in [6]. The
data were obtained by fitting straight lines to intervals with tgax/tyn, = 4. The leading
analytic correction is taken into account by using ¢ — ¢y instead of ¢, and the data are
plotted against 1/¢%% since this gave the straightest lines. ‘The statistical errors are as
illustrated by the Auctualions of the curves.

spreading exponent and of surface exponents up to the present. They also give very
precise estimates for p., in good agreement with those of [6].

In the next section we shall formulate the relevant scaling laws. Part of the scaling
ansatz for spreading in the vicinity of a surface seems to be new. In section 3 we
describe the simulations. Their results are discussed in section 4, and in section 5 we
draw our conclusions.

2. Scaling laws for spreading

The relevant scaling laws have been formulated for special seeds in [9, 11, 12], and
our generalization will be straightforward. In the next subsection we assume that the
seed is finite and is in the interior of an infinite lattice. Spreading from infinite sceds
will be studied in subsection 2(b) and spreading in the vicinity of a surface will be
considered in subsection 2(c).

2(a) Bulk behaviour, finite seeds. Let us denote the seed by S. It is a finite subset
of sites from the cubic lattice Z3. The basic quantity for which scaling laws are
formulated are as follows.

(i) the density of growth sites p(z, ¢, €|S) at time ¢ and point z, with ¢ = p — p..
We assume that spreading started at ¢ = 0, and we define the distance r of # from
the seed as » = min, ¢ ||z — yl|, where || - || denotes the Euclidean norm. From
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p(z,t,€|S) we can immediately obtain the average nunmber N, o(1,€|§) and the
average distance r{{, €|S) of growth sites by integration.
(ii) the probability P(1,¢|S) that the set of growth sites is non-empty at time ¢.
Using renormalization group ideas, we expect that the asymptotic behaviour is the
same for any finite seed, and we have the ansatzes

&2l
plz,t,el8) = —t—F(r/t‘,ctll‘") (3)
and
P(t,¢|8) = £ G(et'/™). 4)

These ansatzes need some comments.

Firstly, the scaling variable =/t* in equation (3) leads directly to the scaling law
R = t* encountered already in the introduction, for any seed (we just have to assume
that the scaling function F'(x,y) is smooth in = and integrable).

Secondly, the dependence on e is more conventionally written by means of the
scaling variable te”*. Our ansatz has the advantage that F(z,y) and G(y) have
simple analyticity properties in y near y = 0 [9], as will be discussed below. Using
instead te** as scaling variable would lead to a more complicated singularity of the
scaling functions at the origin.

The prefactor € in equation (4) is obtained by considering the limit t — oo, e =
constant > 0, and by assuming the scaling function G(y) to be finite for y — o. In
this limit, P(¢,¢|S) becomes equal to the probability P(e,8) that the seed intersects
with the infinite cluster. This probability should have the same scaling behaviour for
all finite seeds, namely ~ (p — p,)?.

Finally, the prefactor €2? /¢ in equation (3) has a similar origin: one factor €?
comes from the above probability that the seed intersects with the infinite cluster,
while the remaining factor €” /¢t comes from the probability that the site at « is in
the infinite cluster too. The infinite cluster is just the set of all points which act as
growth sites at any time. Thus the probability for a distant = to be in the infinite
cluster is given by

rlig‘o Ble, S)f dt p(=z,t,¢|S) = I1m Ple,z) ~ €, )]

To obtain the behaviour exactly at the critical point (this is what we are mostly
interested in), we write

F(z,y) =y f(=,y) G(y) = ¥’ 9(y) (6)
so that equations (3) and (4) become

p(z,t,€|8) =t/ f(rp? et /) @
and

P(t,€|8) = t~ ¥/ g(etV/ ), (8)
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We can now assume that f(z,y) and g(y) are finite (and analytic) at ¥ = 0, and
obtain

p(,1,0|8) ~ t=28/¥ =1 (142 0) )
and

P(t,08) ~ t~? (10)
with

§=B/v,. (11)

Integrating over = at fixed ¢ (in d dimensions of space) we obtain from
equation (9)

Ny(1,018) = /ddm oz, 1,018) ~ t¥rom 12
with
2
Ypoint = 4z ~ V—'G -1 (13)
t

This can also be written as yyqi, = d — Bfv, — 1, where

d= dz - B/v, (14)

is the ‘spreading dimension’. When conditioning on seeds which overlap with the

infinite cluster, then the total number of sites ‘wetted’ at times < ¢ scales as 14,
Finally, it is easily seen that

z=vfy, (15)

where v describes the correlations between points in the infinite cluster [1]. For this
we have just to consider the integral of p(z, ¢, €|S) over all ¢ > 0 at fixed =, and find
that it is a function of the scaling variable er'/¥, up to a pure power. The fractal
dimension D of the infinite incipient cluster is Dy = d/z = d - 3/v.

2(b) Bulk behaviour, infinite seeds. Apart from having different scaling functions, the
main difference when going over to infinite seeds is that the seed has a larger chance
to intersect with the infinite cluster.

It is known that in three dimensions the critical infinite cluster has fractal
dimension D, = 2.5 [11]. Thus the intersection of a line with it will have D; =~ 0.5,
and the intersection with a plane has D; =~ 1.5. Since both are positive, a typical
line or plane will intersect the infinite cluster with probability 1, and we find that
P(t,e) = 1 for line and plane seeds. The same is true in four dimensions where
D, = 3.05 [11]. Notice that this applies only to infinite seeds. On finite lattices one
has strong cross-over effects. Finally, for dimensions greater than four the line will
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not intersect the infinite cluster with probability 1, and the following arguments will
have to be replaced by ones similar to those leading to equation (29) below.

For the density p(z, t, €|S), this means that the prefactor €?? /¢ in equation (3)
has to be replaced by €° /t. When considering the number of growth sites, we have
to take into account that we must study the average number per unit length resp. unit
surface, not the absolute number. We call this ng. For a line seed, we thus obtain

n(1,0|8 = line) = ]dd‘lml p(z,,1,0|8 = line) ~ i (16)
with [12]

Yiie = (d — l)z—f:wl. (17)

For a plane seed, we find similarly
n (t,0/S = plane) = ,/dd_sz' p(e,, 1,05 = plane) ~ t¥ome (18)
with [9]

B
Yplane = (d—-Z)Z -—-1 (19)
vy
More generally, we could also consider fractal seeds. The resulting densities would

in general depend non-trivially on the direction of x. Studying this would go beyond
the scope of the present paper.

2(c) Surfaces and edges. 1f the spreading is away from a surface, the above ansatzes
remain essentially unchanged, even if the seed happens to be located on the surface.
The only modifications (again apart from different scaling functions) are that the
spreading might become direction dependent, and that the exponent 3 is different on
a surface. In the following we shall assume the surface to be straight.

It is well established that the probability that a surface site is contained in the
infinite cluster in the supercritical case scales as [13-16]

P(e,z € surface) ~ € 20
)

with a new exponent 3, > 3. A surface site is less likely to be connected to the
infinite cluster since all connecting paths which would have passed outside the surface

are cut off.
Let us now consider the spreading from a point seed located on a surface.
Equation (4) now has to be replaced by

P(t, e|surface point) = e* G, (et!/¥"). (1)

where G, is a new scaling function, but the critical exponent v, is not changed. At
criticality, we have thus P ~ t~% with

6! = ﬁl/yi (22)
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in analogy to equations (11).

On an edge characterized by an angle 8, we expect that 3 is replaced by a function
of 8. In particular, for a rectangular edge (which is the only case studied below) we
shall call the critical exponent 3,,,., and expect that ﬁedse > B, In analogy to the
above, the growth survival probabifity for a point seed on such an edge will decrease
as P ~ =% with 8,4, = Begge /¥y

The density of growth sites in the vicinity of a plane surface will scale differently
parallel to the surface and away from it. Let us dencte by ¢ the angle between the
growth direction and the surface. Then equation (3) is replaced by

E(ﬁ+ﬁ.)/‘1.‘;(r/t’,dl/”‘,q&) for ¢#O

23
B E (r]17, et!/™) for ¢ = 0. &

p(z,t, e|surface point) = {

Notice that we assume also that the exponent z is unchanged. The fact that the
exponents v and v, are unchanged in the vicinity of a surface were previously derived
by field theoretic methods in [13] and [14], respectively. The simulations presented
below give another independent and numerically very precise verification.

From these ansatzes it follows that the average distance of growth sites from the
seed increases at the critical point as ¢*, both for growth sites on the surface and in
the bulk. This might seem surprising since the ‘static’ critical correlations between
surface sites decrease faster with distance than in the bulk: c(z) ~ 724+™ with
n, = 203, /v — d — 2. Also the fractal dimension of the set of wetted surface sites,
Dy = d—1- g/v, is different from that in the bulk. But in spite of that, the
clusters of all wetted sites are not very non-isotropic. The ratio (Ri)/(Rﬁ) is only
~ 1.25, and the main anisotropy is concentrated in a rather thin region near the
surface.

This faster decay of ‘static’ correlations arises from the fact that the number N;“'f
of growth sites on the surface decreases faster than that of growth sites in the bulk.
From equation (23) we obtain

N,(t,0|surface point} ~ t¥= Yourt = d2 — % -1 24)
t
and
NS¢, Ojsurface point) ~ {9 =(d-1:- Py 25
sut(¢, Olsurface point) ~ t¥=. Vot = (d = Dz = T2 -1, (25)
For point sources on edges, one has analogously
B+ B
Vetge = d = = <5 1 (26)
B, + 8
Yedgesut = (4= Dz = =—% 1 @7

vy

and similarly fOr Yegpe ege-
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Finally, the densitygof surface sites which are connected to any site a distance L
away from the surface (and whence are wetted though a slab of finite thickness L) is
found to decrease at criticality as [15, 16)

p~ LRIV, (28)

In addition to point seeds on surfaces, we had also studied in [12] line seeds on
surfaces and on edges between perpendicular surfaces. In these cases the survival
probability P(¢) would still be 1 on an infinite lattice, but its behaviour will be
complicated on finite lattices. The growth site number, on the other hand, will scale
with exponents which depend on the fractal dimension of wetted boundary (resp.
edpe) sites.

The fractal dimension D 4. of wetted edge sites is definitely less than zero for
d = 3 [12] (ie. the probability that an edge contains a site in the infinite cluster
decreases as an inverse power of the lattice size). The scaling exponent can then be
estimated as follows. Let us consider those sites on the edge which are connected
to clusters reaching a distance £ away from the edge. A site will belong to this set
essentially if the spreading from it survives at least a time ¢ = £!/%, The density of
such sites will thus decrease as £~ P«=/*, On the other hand, each such site will give
rise to a roughly isotropic cluster of growth sites with ~ £2¢ /¢ = t4-1 sites. These
clusters will essentially not overlap if 3.4, > v. In this case the total number of
growth sites per unit length n,(¢,0[edge lme) should scale with an exponent which
is exactly that for a point seed on the edge,

B+ Bedge

L

Yedge line = d—1- 'chgclyt =dz— -1= Yedge- (29)

Notice that this would also agree with equation (17) if G4, = v, Le. if the non-
overlap condition would hold marginally. The non—overlap condition is just the
condition that D, <0

In contrast to e(fge sites, the fractal dimension of the set of surface sites Dy
very close to 1 (for d = 3) [12] Thus its intersection with a line has dimension very
close to zero. In this case it is not clear a priori whether y,, ¢ jine = Yoo (if D < 1)
or whether Ysurf tine = VYline (lf Df,s > 1)‘

3. The simulations

(¢) As we had already said in the introduction, all simulations (except those
described in part (b) below) model the growth processes described in the last section.
They use essentially the same routines as those in [11, 12], with just a few technical
improvements which increase speed. In particular, the status of each site (wetted/not-
wetted for bond percolation, tested/not tested for site p) is stored in 1 bit (using
multispin-coding, ie. storing 32 sites in one long integer word). The list of actual
growth sites is stored in an array which is updated and replaced after each time
step. The random decision whether a site (resp. bond) is broken or not is not made
in advance but ‘on the fly’. Thus it has to be made only for sites (bonds) which
have at least one wetted neighbour. On large lattices this is a very important saving,
making the routine much faster than the well-known Hoshen-Kopelman algorithm, for
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example. This algorithm is often called the Leath algorithm, though the description
given by Leath [17] is somewhat different and, when followed literally, would be much
slower. As random number generator we used a Kirkpatrick-Stoll type generator [18]
with (p, ¢)=(250,147). On a DECstation 2100, where most of the simulations were
done, we got about 50000 wetted sites per second for bond percolation, and 30000
for site percolation. For a bond cluster obtained from a point seed and followed for
up to 800 time steps, this gave on average about 0.365 s.

In order to avoid excessive swapping, the lattice sizes actually used by most
clusters were typicaily restricted to about 10° sites (12 MB). The allocated lattices
were defined to be about twice as large, to allow larger clusters occasionally and thus
to avoid finite-size effects.

Let us now consider possible finite-size corrections (FSCs) in more detail,

For simulations with point seeds, there are no FsCs at all, provided the lattice is
large enough so that its boundary is never hit. The latter was checked in each run.

For infinita seede wa uced norindic hanndary eonditin ath TV i a dirart:
SO NG C 5CC0 G PONCUI oOunGary COnGIIONS \I.UI.ISI.II 4L A0 the direction

of the seed extension(s). Let us call a point y an ‘ancestor’ of a space—time point
(x,t) if there is a spreading path from y to = of length < ¢. It is easy to see that
FSCs are proportional to the probability that any point (z,¢) has two ancestors g,
and y, which arc a distance L apart. Indeed, a configuration on a finite lattice with
periodic boundary conditions can be viewed as a special—periodic—configuration on
an infinite lattice. This periodicity (which is the only possible source of FSCs) can only
be felt if a point has two ancestors which are in identical states due to the periodicity.
For line seeds, we could use lattices longer than the maximal diameter of any cluster
measured with point seeds (with comparable statistics), ruling thus out any sizeable
FSCs, In general the aspect ratio (length/width) of the lattice was about 2.

For plane seeds, the above criterion would have required somewhat too large
lattices. But notice that the above estimate is somewhat pessimistic and can be
refined. A more careful argument shows that FSCs can arise only if the following
holds for some ¢ > 0: together with each ancestor y of (z,t), also one of the four
points y + Le; is an ancestor of (z,t). Here e; and e, are unit vectors in the seed
plane. If this does not hold (i.e. if for each (=z,t) one of the ancestors is unpaired),
then this unpaired ancestor would have already wetted (=,t), and this would be

independent of any periodicity. We estimated that with our Jattice sizes and growth

timee (] — <1‘1 { ( 180N the roculting F¢re ara npnhn:h]p
MEARR WY \‘.J — ot L lJUU} IUD“ILIIIE AT BN IIUEJI .

(b) In addition to these simulations where the spreading was followed in real time
as in an epidemic process, I used also a depth-first algorithm as given in {19]. This is
somewhat faster than the breadth-first algorithm described above, but it does not give
observables as functions of spreading time. It was thus used only in an application
where following the real-time evolution would not have made sense in any case.
These runs were devoted to measuring directly the surface exponent 3, /v appearing
in equation (28). For this, I used a lattice of size L x L x h with L >» h. What was
measurcd was the number of sites on the upper surface z = h wetted by the entire
lower surface z = O taken as seed. Lateral boundary conditions were again taken
periodic. For this purpose, h was first put to 1, spreading was run until all wettable
sites had been wetted, and all wetted sites on the upper boundary were written in
a list. After that, the height was increased to h = 2, the previous list of wetted
boundary sites was taken as the new seed, and spreading was continued until again
all sites were wetted. This was repeated, each time increasing h by one unit and using
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the old list of wetted sites as new seeds, until the maximal hight was reached. In this
way the surface ‘order parameter’ was measured in a single run for all heights up
to h = 255, on surfaces of size 640, The statistics accumulated this way was several
orders of magnitude larger than that of [16].

For these last simulations, the above arguments against FSCs are not helpful since
we do not have any control of the spreading times, and they can occasionally be very
large. To estimate FscCs in this case, we thus also ran simulations on smaller lattices.
Resuits from such a check will be given later together with the main results.

(c) All simulations reported below were done in the close vicinity of the percolation
thresholds: for bond percolation, we used 0.2878  p < 0.2884, while for site
percolation 0.31155 < p < 0.3117. These intervals are large enough that they span
the uncertainty of p,, and thus allow estimates of it. On the other hand, they are so
small that the dependence of the observables on p is still linear, and hence averages
can be formed by averaging over p.

The entire statistics is found in table 1, together with the average CPU times per
run. The total CPU time spent on these simulations was somewhat more than 4700 h.

Table 1. “Type’ indicates bond (b) and site (s) percolation, respectively. ‘Lateral size’
indicates the size of the lattice in the direction of the seed, unless the latier is a
point. The last two lines (wetted surface sites) refer to simulations using the depth-first
algorithm discussed at the end of section 3. For them, the first column refers to the
thickness h of the layer, while for all other simulations the first column gives the number
t of time steps.

Seed Type Lateral CPU time Number
No (observable) (b/s) tresp. h size {s/run) of runs
1 Point b 800 — 0.37 4 800000
2 s 750 — 0.73 29000060
3 Line b 700 768 19 60000
4 s 650 768 25 84000
5 Plane b 1500 512 x 512 75 8500
6 s 1400 512 x 512 96 7100
7 Surface point b 1100 — 0.09 26 000000
8 8 1100 — 0.13 15000004
9 Surface line b 1050 1024 9.1 43000
10 s 1000 1024 9.8 44000
11 Edge point b 1500 - 0.0076 44 000000
12 5 1500 - 0.0156 18000000
13 Edge line b 1500 768 18 340000
14 8 1500 896 1.93 250000
i5 Surface,
Wetted
surface sites b 255 640 x 640 140 10700
16 " s 255 640 x 640 160 4 800
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4. Results

4(a) Exponent z.  In figure 3 we show the distances F(¢) for the six most relevant
sets of growth sites. On each panel both bond and site results are shown. In order for
the graphs to be more significant, we have divided off the dominant power behaviour
%7, and show the ratios R/t"7 on log-log plots. In all panels the upper curves
refer to site percolation, while the lower ones refer to bond percolation. As we had
already pointed out in the introduction, R(t) depends very little on the precise value
of p. The curves shown in figure 3 represent averages over zll p, with the average
p very close to 0.2488125 resp. 0.311605. If we had superimposed the individual
resuits for each p, the curves would have thickened only very little.

Panel (b) shows the distance of growth sites on a surface (from a point seed on
the same surface). The fact that we see the same power behaviour as in the other
panels (where growth sites in the bulk are used) is our best proof for the claim that
z is the same on surfaces and in the bulk.

Except in panels (b), {e) and (f), the statistical errors are less than the widths of
the lines. In panel (b), the uncertainties are just as large as the visible jitter, while the
errors in panels (e) and (f) are up to 0.1%. With these caveats, all trends visible in
figure 3 arc thus statistically significant. In particular, we see in panel (d) that the site
percolation results from line seeds clearly indicate that z > 0.73 (as was also clear
from figure 2): not only has the upper curve a positive slope for large t, it is also
curved upward. Similar upward curvatures are seen in panels (a) and (¢). In panel
(b) the bond result looks very straight and the site result is slightly curved downward.
Clear downward curvatures are seen in panels (e) and (f). In addition, the bond

Q.78

076 T

074 T

072 1

effective exponent z

Q0.7 T

068 T

0 00z 004 006 008 01 012 014 016
108

Figure 4. Effective exponents for the increase of the grawth site distances. As in figure 2,
fits to the derivatives dlog R/dlog(t — t;), fitted over two octaves, are plotied against
1 t%6, The values of tg are chosen such as to produce the straightest lines. Each line
corresponds to one geometry {with the numbers corresponding to those in tables 1 and
2), and to an average over all values of p in the vicinity of pc. In these averages care
was taken to obtain averages of p equal to the values of p. given in [6]. Statistical errors
can be estimated by comparing with figure 2 and with the ermrors of the extrapolations
1o t — oo given in table 1.
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percolation results in the latter panels show already significant negative slopes, which
together with the downward curvature would clearly indicate z < 0.73.

Local effective exponents obtained from the data shown in figure 3 are given in
figure 4. From equation (2) we would have

dlog R(t
——-——-—d]gogt(')=z+(z—A—l)b/t'A+... (El0))
with ¢ = ¢ —¢;. Thus we plotted dlog E(t)/d logt’, obtained by fitting over intervals
[t/4,1], against 1/¢'2. If equation (2) is correct and ¢, was chosen optimaily, we
would get straight lines. We indeed see reasonably straight lines in figure 4, with
a value A = 0.6 compatible with previous analyses [11, 12]. We should however
point out that the origin from which R is to be measured is not always uniquely
defined. Allowing an uncertainty §R of order 1 in the definition, the scaling ansatz
should read R~ §R + At? ~ At*(1 4 constantt~*}, mimicking thus a non-analytic
correction with exponent A = 0.73. It is possible that the observed A is strongly
influenced by this.

But the intercepts of these lines at 1/t = 0 do not coincide. These should be the
true critical exponents. Their values are given in the first column of table 2. Notice
that the fits were made for each data set separately, L.e. no consistency between the
lines of table 2 were imposed. The errors there are somewhat subjective, as is usual in
such extrapolations. This could of course mean that universality and/or hyperscaling
is violated, but we prefer to interpret it as evidence for further corrections to scaling
which would be explicitly visible only with much higher statistics.

Thus no simple ansatz for the corrections to scaling is possible which could
describe all data shown in figures 3 and 4 consistently. On the other hand, the
discrepancics are very small. Each curve is compatible with z being not more than
two standard deviations away from the value

z = 0.728 £ 0.003 (31)

which we take as our preliminary estimate.

Previous estimates of this exponent were, among others, 0.725 £ 6.006 [11],
0.728+0.006 [12], 0.70+ 0.01 [20] and 0.746 + 0.0056 [21]. The latter had consumed
by far the largest amount of CPU time (about 5000 h CPU time on an IBM 3091
mainframe), but seems to be off by more than 2 standard deviations.

4(b) Exponents y, &; bulk behaviour. In contrast to R(t), both N, (1} (resp. n,())
and P(t) are strongly dependent on p. This suggests two possible strategies. In view
of the fact that our total statistics is smaller than that of [6], we can accept their
estimates of p,, and obtain estimates of y and é with very small statistical error bars.
Alternatively, we can try to fit the exponents together with p.. In table 2 we show
results of the first kind of fit, in table 3 the latter. For both tables notice that y
depends on the seced, in contrast to z, and that é is non-zero only for point seeds,

Compared with R(t), both n,(¢) and P(t) have in general more complicated
visible corrections to scaling, i.e. no straight lines are in general obtained when plotting
the logarithmic slopes against any negative power of ¢ with an exponent close to 0.6.
As examples we show in figure 5 the effective exponents for the numbers of growth
sites from point seeds on surfaces (panel (a)), and from line seeds (panel (&)).
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Figure 5. Effective exponents for the number (resp. density) of growth sites. The data
were obtained by fitting straight lines to log Ny/dlogt as in figure 2. No constant offset
tp was subtracted from ¢, since no straight lines would have been obtained for any t. In
panel (a) the seed was a point on a surface, while in panel (b) it was a line. The values
of p are in panel (a) p = 0.31159,...,0.31163, resp. p = 0.24888,...,0.248 83, both
in steps of 0.06001. In panel (b) the curves are for p = 0.31155, 0.31160, 0.31162
and 0.31165, resp. p = 0.24888, 0.24381 and 0.24882. The dots correspond again to

averages.

We have to add one comment on the estimate of y,¢ . in lines 11 and 12 of
tables 2 and 3. Though this is strictly speaking not a bulk exponent, the relation
Ysurt line = MD{ Yures Yiine) PULS A Strong constraint on it in terms of bulk exponents
and vice versa. By plotting the logarithmic derivative dinn /dInt for growth from
a surface against 1/¢®, we find straightest lines for A = 0.15-0.2 (see figure 6).
Such small A implies however that the true exponent is obtained by a very long
extrapolation, and has thus very large uncertainties. Also, the offset ¢, needed to
produce a straight line for the site percolation data was #;, =~ 8, indicating that a
fit with a single non-analytic correction term is not very meaningful. Similarly large
corrections to scaling are also responsible for the very large errors quoted for some
of the other exponents in table 2.

Comparing tables 2 and 3 we see few differences. In general the estimates for p,
in table 3 are very close to those of [6]. Our best overall estimates (using in addition
the simulations to be discussed in the next subsection) are

P, = 0.248814 £ 0.000 003 (bond percolation) (32)

and
p. = 0.311604 £ 0.000 006 (site percolation). (33)

Imposing the correct scaling relations, our overall estimates for the bulk exponents
are finally

z =0.728+0.002 y = 0.494 £ 0.006 6 = 0.345 £ 0.004. (34)
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Figure 6. Similar to figure 5, but for a line seed on a surface, and plotted
against 1/¢%17,  Also, constants # were used as in figure 2 to produce straight
lines. The curves correspond to p = (.31158, 0.3116, 0.31162 and 0.311635, resp.
p=0.24888,...,0.24883,

Exponents derived from these are n =28 /v —d 4+ 2 =2§/z — 1 = -0.052 + 0.009
and Dy =d—-8/v =3-6/z = 2.526 + 0.006. They are in very good agreement
with the more precise estimates of [6].

In conclusion we can say that the determination of y and 6 is less precise than
that of z. But it is less problematic, not because the scaling corrections are smaller,
but because they are already visible at the present lattice sizes. For z there must
be scaling corrections which should show up only much later, and whose existence is
only indicated indirectly internal inconsistencies,

Finally, I want to make a short comment on the supercritical behaviour. For
P > p., We expect n, to tend towards & positive constant with ¢ — oo, when
starting with a plane seed. Naively one might have expected this convergence to
be monotonic, since n, decreases also monotonically at p = p,. But as seen in
figure 7 (and observed already in [11] for d = 4), this is not true. For a plane
seed, n, first goes through a minimum before settling towards a constant (we cannot
exclude even further oscillations). A posteriori, this can be explained easily. The
decrease of n, for a plane seed is a result of two competing effects: on the one hand,
the growth surface becomes more and more wrinkled with time, and thus its area
increases. On the other hand, the density of growth sites on this wrinkled surface
decreases, and actual growth is restricted to fewer and fewer subdomains. Figure 7
shows that the latter effect dominates at small times (and for p = p, at all times),
but that the wrinkling effect dominates at large times for p > p.

4(c) Surface and edge exponents. The simulations with seeds on surfaces and on
edges, and with the spreading followed in ‘real’ time, were analysed exactly as those
with seeds in the The results are also given in tables 2 and 3. As scen from these
tables, the internal consistency of these results is quite good. They give the estimates
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Figure 7. Density of growth sites for bond percolation using a seed which consisted of
an entire plane, plotted against t. What looks like a straight line is actually three curves
for p = 0.2488, 0.24881 and (.24882, For p; > 0.25 one sees that ng goes through a
minimum, before tending towards a constant for ¢ — co.

B, /v = 6,/z = 0.966 £ 0.007 B./v = 6./z =1.56+0.01. (35)

The depth-first simulations (reported in the last lines of tables 2 and 3) were the
only simulations where we could not exclude finite-size corrections a priori. Thus we
have also performed simulations on a lattice with much smaller base surface than
that of our main simulations (L x L = 160 x 160 instead of 640 x 640). In figure 8
we show the number of wetted sites against the thickness A of the layer, both for
the main simulations and for these test runs. We see that the finite-size corrections
are negligible for A < 0.4L, suggesting thus that we can believe our simulations up
to h = 256. The resulting exponents are aiso given in tables 2 and 3, and our final
estimate for 3, is

B,/v = 0.970 £ 0.006. (36)

This should be compared with the best previous estimate, G;/v = 0.98+0.02 of [16].
The fractal dimension of wetted surface sites becomes from this Dy , = d—-1-3, /v =
1.030 0.004. This is indeed slightly larger than 1, in agreement with our finding

that Yeurt line = Yline®

5. Conclusions

In this paper we have presented Monte Carlo results for the spreading of percolation
in three dimensions. In order to check for systematic corrections to scaling, we
have compared bond and site percolation, and we have measured in many different
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Figure 8. Density of wetied surface sites for bond percolation starting from the
opposite surface of a slab-shaped lattice, plotted against the thickness h of the slab.
In contrast 1o all previously shown figures, these data were obtained by means of the
depth-first algorithm described at the end of section 3. The upper four curves are for
p = 0.24878,...0.24884 in steps of 0.00002, on lattices with surface 640 x 640. The
lowest curve is for p = 0.2488 on a surface of only 160 % 160 sites.

geometries. Except for the last set of data, we have also measured in each case more
than one observable.

In particular we have also measured the spreading in the vicinity of surfaces and
edges. This gave us, in addition to the bulk exponents, also estimates of the surface
resp. edge exponents. In order to compare the exponents of different observables
in different geometries, we have formulated new heuristic (hyper-)scaling laws which
were tested with high precision.

Compared with previous simulations, our statistics is outpassed only by those of
[6] (who did not measure spreading and surface exponents) and those of [2], who
measured indeed none of the present observables. Compared with all other studies,
the present one gives statistical errors which are smaller by at least one order of
magnitude. Our quoted final errors show much less improvement due to the very
substantial systematic corrections to scaling which went unnoticed in previous work.

We verified previous claims [11] that the distance R{?) involved a correction-to-
scaling exponent A = 0.6 with large amplitude. But we found that this cannot be the
leading correction. Otherwise our data would not be internally consistent: in addition
to breaking of universality in the usual sense, we would have no universality between
exponents measured in different geometries,

For the second independent critical bulk exponent we found similarly large
corrections to scaling. In that case, one could indeed see from some of the individual
measurements that a very small correction-to-scaling exponent is needed. A precise
measurement was impossible since this seemed not to be the only such exponent less
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than 1. The latter is in contrast to claims in [10] (for different observables), where
only analytic corrections to scaling were found in addition to logarithmic ones. were
found in addition to logarithmic ones.

The same remarks apply to the surface exponent 3,. Finally, we also measured
the analogous edge ¢xponent 3,. We found that the fractal dimension of wetted
surface sites is slightly larger than 1, and that the fractal dimension of wetted edge
sites is definitely less than 0. This agrees with previous findings [12], and means that
the probability for an edge of a cube to intersect the largest cluster tends to zero
when its size tends to co.

An important result of our simulations is that there is only a single independent
surface exponent, and (for any fixed angle) a single edge exponent. A priori one might
have thought that a second independent surface exponent is needed for spreading,
but our simulations showed clearly that this is not the case.

In [11] only planes were used as seeds. It was argued that point seeds in particular
should be less efficient since they induce large fluctuations at early stages of the
growth (where the number of growth sites per cluster is very small), and that these
fluctuations influence the measurements also at later times. This is true, but it is
only part of the full truth. Another effect is that with large seeds (planes, lines) one
spends much more time on small clusters which contribute little to understanding the
scaling region. If onec uscs point seeds, the probability for a randomly chosen seed
to be on a cluster of size N is proportional to N, thus suppressing small clusters.
We found that both effects essentially cancel. The statistical errors on the exponents
obtainable with fixed CPU time are very much independent of the type of seed.

Gur results show that one has to be very careful when using spreading for
estimations of critical percolation exponents, though it seems to be by far the most
efficient algorithm as far as speed is concerned. In order to go substantially beyond the
present investigations, one would have to use not only larger clusters but also much
higher statistics, Only then one could hope to fix precisely the scaling corrections,
and to obztain reliable extrapolations to the critical point.
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